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The way we've measured snow in
the West since 1910

Tom Painter/JPL




Tom Painter/JPL - - The Way We

... 39 million times more
coverage
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Quantification of snowmelf fiming
« Quantification of snowfall
* Much improved allocations
« Much improved runoff forecasting
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Measurement: Ax between 2 satellites
Infer: mass change at the surface

Units: represented as cm of H,O

CA Groundwater

| NASA/UCI/JPL /5 TR

. i . A ' .l' . ] "’

\ Courtesy, J. Famiglietti ) ‘,\3!:/', ‘."'}y.

Gravity Recovery and Cllmate | L
Exper:ment GRACE Q RS

«1*\«

s 1 '!.' d‘ 3 Nov 2002-2008 gj;

i | T— -

f

Centimeters



California’s Central Valley 2004 - 2014:
Groundwater changes from GRACE
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* GRACE measures all

the water storage
changes on land

 To estimate

groundwater, the snow,
surface water and soill
moisture changes must
be subtracted

Groudnwater Storage Anomaly (in cu. km)
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UAVSAR

Uninhabited Aerial Vehicle Synthetic Aperture Radar

UAVSAR

A High Resolution, Low Noise,

Fully Polarimetric L-band SAR
(UAVSAR = Uninhabited Aerial Vehicle
Synthetic Aperture Radar)
Designed for repeat track differential
interferometry & optimized for change
detection.

POLSAR image / 7 m resolution

S'acramento Delta / fchzlse' color UAVSAR
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POC: Cathleen E. Jones (cathleen.jones@jpl.nasa.gov)

First Pass

Differential Interferometry
(DINSAR)

Second Pass

AP = 47ﬂ(D2 -Dy)

A = wavelength of radar



Application: Levee Monitoring

UAVSAR

Uninhabited Aerial Vehicle Synthetic Aperture Radar

Project Overview

Monitoring Levees and Subsidence in the Sacramento-San

Joaquin Delta
NASA Program: Applied Science - Natural Disasters
Collaboration: JPL, Ca. Dept. of Water Resources, USGS,
HydroFocus
Instrument: UAVSAR, near-monthly collections over the entire
Sacramento-San Joaquin Delta since July 2009

Impact %) _

Objectives: WqY | ocation
1. Disaster Mitigation and Response: Use DINSAR to :
monitor movement of and seepage through levees.
2. Water Resource Management: Measure subsidence rates
across the entire area to inform future long-term
solutions to water management issues in the area.
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Scientific Impact:

Major Findings:

1. Cracks in levees identified with DInSAR.

2. Post-repair settlement along levees detected and monitored. s : ! New Seep
3. Seeps identified with coherence change detection; detection A A AT N oot % in

methodology developed. R - S0 N June 2011
4. Subsidence rates within the islands show general subsidence e | L :
trends in the region.

POC: Cathleen E. Jones (cathleen.jones@jpl.nasa.gov)



Continuing Subsidence in the Central Valley

PALSAR-1 (Japan) Zhen Liu, Vince Realmuto, Tom Farr (JPL)



20 Miles

Highest subsidence directly affecting the
California Aqueduct:

Maximum Subsidence (inchés)
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Subsidence bowl immediately north of the junction
of the Ca. Aqueduct with Avenal Cutoff Rd.

A 1.3 mile stretch of the aqueduct experienced
>7" of subsidence, with maximum reaching 11.5”
closest to the center of the subsidence feature.

Delta-Mendota Canal
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SMAP

2015 Launch
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3km Radar footprint
40km Radiometer footprint
6am/6pm orbit
2-3 Day Reuvisit

Products
Soil Moisture
Freeze-Thaw State
Vegetation Water Content
Surface Temperature

Soil Moisture

Better weather & climate Forecasting

Informing agriculture practices

Drought early warning

Extent of flooding

Human health: Vector borne disease

Transportation: Air (Dust), Sea (lce),
Land (Mud)



' First SMAP Global Soil Moisture Map

May 4 to May 11, 2015
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1. Surface Water is key to the global
water cycle, regional water availability,
and flood/drought risk and prediction.

BOUNDARY LAYER

(AND EXC r
WITH FREE ATMOSPHERE)

~

How much “surface water” do we have?

2. The Problem In-situ observations cannot
address global, or even regional, surface
water information needs.
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SWOT Mission Overview

e The Surface Water and Ocean Topography
(SWOT) mission is a NASA/CNES/CSA/UK

gove S

mission scheduled for launch in 2020 Interferometar nterferometer
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Water Cycle and Freshwater Availability \SA Jet Propulsion Laboratory

Next Challenge : Adding Integrated Value to the Measurements

FRESHWATER STORAGE IN UD¢
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Importance of Atmospheric Rivers

Key to our water supply &
Responsible for our floods
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Working with National & International Programs
to improve the accuracy and lead times of
predictions of Atmospheric Rivers with




Comprehensive Capabilities for
Monitoring Earth’s Fresh Water

* New Instruments

Airborne Science & Prototype Monitoring
Routine Satellite Mapping

Research, Synthesis & Modeling

Deliver Capabilities for Operational Entities

+  Water from snow melt
+  Timing of runoff
« Precipitation forecasts
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N AS A Jet Propulsion Laboratory

' California Institute of Technology

Progress in Subseasonal Weather/Climate Forecasting

Duane Waliser
Jet Propulsion Laboratory/Caltech
Pasadena, CA

Teleconnections
Monsoon ENSO

Drought Response Workshop
~ February 25-26, 2015




ARs : Key to Beneficial & Hazardous Water Delivery

25% - 45% of annual

ARs Provide beneficial rain
and snow for water supply

Atmospheric Rivers are to the
west what Hurricane Hazards

precipitation in the west coast
states fell in association with
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An average AR transports the equivalent of 7.5 times the average
discharge of the Mississippi River, or about 10 Million acre feet
per day. Of this, 20-40% may become precipitation.




Forecasts of Landfall Location

Forecast Models Need to Improve their

For example: at 5-6 day lead time, global weather forecasts

cannot determine if it will hit LA or San Francisco
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The Unusually Snowy Wmter of 2010/2011
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2010/2011 winter

e Largest total seasonal snow (~¥170% above normal)
e Largest number of AR dates (twice normal)

e Largest AR-related snow accumulation

On average 9 AR
dates per winter
contribute 37%
total snow
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December 18 to 22 — Five Straight Days of AR

Morphed composite: 2010-12-17 00:00:00 UTC

& 17-19 December 2013
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>13 feet of snow in
the Sierras

>6 inches of rain in LA
and >21 inches in
parts of the foothills
Spread into
Nevada/Arizona/Utah
: Zion NP evacuated




14 out of the season’s 20 AR dates occurred in one month

Observed precipitation from
12 UTC 8 Dec to 12 UTC 22 Dec 2010

14 *(—December 2010 . Widespread
areas received
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i 1 inches of rain
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Daily ASWE (cm)

AO Index

PNA Index
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Climate Conditions of the 2010/2011 Winter

—AO and —PNA tend
to be associated
with more stormy
weather in California
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Height
Anomalies

“Arctic Oscillation”
(AO)

“Pacific North
American” (PNA)

Circulation anomaly when
both PNA and AO in
“negative” phase




Phasing of AO/PNA vs.
AR Frequency in California

Frequency (% days)

14

AR Frequency

Diff.

NDJFM, WY1998-2011

AO
=0.005

PNA AO & PNA

Diff. =0.038 Diff.

=0.001

When the AO and PNA
are both in the negative
phase, ARs are
significantly more likely
to occur.



